Approximate Interpolation by Functions in a Haar Space

Douglas S. Bridges

University of Buckingham, Buckingham MK18 1EG, England

Communicated by Oved Shisha

Received September 23, 1985; revised July 11, 1988

1

Let $\{\varphi_1, ..., \varphi_n\}$ be a Chebyshev system spanning an *n*-dimensional Haar subspace H of C(I), where I is a proper compact interval in \mathbb{R} . As is well known, for each a in C(I) there exists an element h of H that interpolates a on a given set of n distinct points of I. In [4, (2,2)], I proved that this interpolation can be performed approximately, with error at most ε , on a set of n+1 distinct points of I, provided that set is sufficiently close to degenerating into an n-point one. The purpose of this note is to show how that approximate interpolation result can be substantially improved.

As in my earlier papers on Chebyshev approximation (for example, [3, 4, 5]), we shall work entirely within the constructive framework erected by the late Errett Bishop [1, 2]. To do so successfully, we must pay particular attention to the interpretation of definitions and propositions. Thus, for example, we define a *Chebyshev system* over a proper compact interval I to be a set $\{\varphi_1, ..., \varphi_n\}$ of elements of C(I) such that $\beta(\alpha) > 0$ for each α in [0, I/n], where I is the length of I and

$$\beta(\alpha) = \inf\{|\varphi_1(x)| : x \in I\}$$
 if $n = 1$,
$$= \inf\{|\det[\varphi_j(x_i)]| : x_1, ..., x_n \in I, \min_{1 \le i < j \le n} |x_i - x_j| \ge \alpha\}$$
 if $n \ge 2$.

Also, a modulus of uniform continuity for a mapping f between metric spaces (X, ρ) and (X', ρ') is a function $\omega: \mathbb{R}^+ \to \mathbb{R}^+$ such that if $\varepsilon > 0$ and $\rho(x, y) < \omega(\varepsilon)$, then $\rho'(f(x), f(y)) < \varepsilon$.

¹ As it stands, Proposition (2.2) in [4] is wrong in stating that the approximate interpolating function can be chosen to have a modulus of continuity independent of ε . I am grateful to the referee for pointing out this error, and for making other helpful comments about this paper.

2

In the remainder of this paper, $\{\varphi_1, ..., \varphi_n\}$ will be a fixed Chebyshev system, generating a Haar space H, over the compact interval I of length l. Also, φ will denote the Hausdorff metric on the set of compact subsets of I.

The following lemmas prepare us for the proof of our main result.

LEMMA 1. If A is a totally bounded subset of C(I), then the map $(a, x) \rightarrow a(x)$ is uniformly continuous on $A \times I$.

Proof. Since A is totally bounded, it is equicontinuous; let ω be a common modulus of uniform continuity for the functions in A. Given $\varepsilon > 0$, consider $a, b \in A$ and $x, y \in I$ such that $||a - b|| < \varepsilon$ and $|x - y| < \omega(\varepsilon)$. We have

$$|a(x) - b(y)| \le |a(x) - b(x)| + |b(x) - b(y)| \le \varepsilon + \varepsilon = 2\varepsilon$$

from which, as ε is arbitrary, the result follows.

For each α with $0 < \alpha \le l/n$, let

$$J_{\alpha} \equiv \{(x_1, ..., x_n) \in I^n : x_{i+1} - x_i \ge \alpha \text{ for all } i (1 \le i \le n-1) \},$$

a compact subset of I^n . For each $a \in C(I)$ and each $\mathbf{x} \equiv (x_1, ..., x_n) \in J_{\alpha}$, let $\theta(a, \mathbf{x})$ be the unique element h of H such that $h(x_i) = a(x_i)$ for each $i \in I$ ($1 \le i \le n$).

LEMMA 2. If A is a totally bounded subset of C(I), then the map θ is uniformly continuous on $A \times J_{\alpha}$ for each α in (0, l/n].

Proof. Let $0 < \alpha \le l/n$. By Cramer's Rule, for each $\alpha \in A$ and each $\mathbf{x} \equiv (x_1, ..., x_n) \in J_2$,

$$\theta(a, \mathbf{x}) = \sum_{i=1}^{n} (\Delta(\mathbf{x})^{-1} \sum_{i=1}^{n} a(x_i) \varphi_{ij}(\mathbf{x})) \varphi_j,$$

where $\Delta(\mathbf{x})$ is the determinant of the *n*-by-*n* matrix $M \equiv [\varphi_j(x_i)]$, and $\varphi_{ij}(\mathbf{x})$ is the cofactor of $\varphi_j(x_i)$ in M. By the Haar condition, Δ is bounded away from 0 on J_{α} ; whence the map $\mathbf{x} \to \Delta(\mathbf{x})^{-1}$ is uniformly continuous on J_{α} . The cofactor map $\mathbf{x} \to \varphi_{ij}(\mathbf{x})$ is certainly uniformly continuous, and hence bounded, on J_{α} . Also, for all $a, b \in A$ and $\mathbf{x}, \mathbf{y} \in J_{\alpha}$, we have

$$|a(x_i)\varphi_{ij}(\mathbf{x}) - b(y_i)\varphi_{ij}(\mathbf{y})| \leq |a(x_i) - b(x_i)| |\varphi_{ij}(\mathbf{x})| + |b(x_i)| |\varphi_{ij}(\mathbf{x}) - \varphi_{ij}(\mathbf{y})|$$

$$+ |\varphi_{ij}(\mathbf{y})| |b(x_i) - b(y_i)|$$

$$\leq c(||a - b|| + |\varphi_{ij}(\mathbf{x}) - \varphi_{ij}(\mathbf{y})| + |b(x_i) - b(y_i)|),$$

where c>0 is a bound for $|\varphi_{ij}|$ on J_{α} and for all the functions in A. Since A is equicontinuous, we now see that the maps $(a, \mathbf{x}) \to \Delta(\mathbf{x})^{-1} a(x_i) \varphi_{ij}(\mathbf{x})$ $(1 \le i, j \le n)$ have a common modulus of uniform continuity on $A \times J_{\alpha}$. The desired result follows almost immediately.

LEMMA 3. Let X be an equicontinuous subset of C(I), ω a common modulus of uniform continuity for the functions in X, S a subset of I, and a, h elements of X such that $|(a-h)(s)| < \varepsilon/3$ for all s in S. Then $|(a-h)(x)| < \varepsilon$ whenever $x \in I$ and $\rho(x, S) < \omega(\varepsilon/3)$.

Proof. If $x \in I$ and $\rho(x, S) < \omega(\varepsilon/3)$, then, choosing s in S with $|x - s| < \omega(\varepsilon/3)$, we have

$$|(a-h)(x)| \le |a(x)-a(s)| + |(a-h)(s)| + |h(s)-h(x)|$$

$$< \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon. \quad \blacksquare$$

Our next lemma strengthens Proposition (2.2) of [4].

LEMMA 4. Let A be a totally bounded subset of C(I), and m an integer with $1 \le m \le n$. Then for each $\varepsilon > 0$ there exist $\delta_m > 0$ and a totally bounded subset B_m of H with the following property: if $a \in A$ and $x_1, ..., x_m \in I$, then there exists h in B_m such that $|(a-h)(x)| < \varepsilon$ whenever $x \in I$ and $\rho(x, x_i) < \delta_m$ for some i.

Proof. We proceed by induction on m. If m=1, use [3, (2.7)] to construct ψ in H such that $\inf\{\psi(x): x \in I\} > 0$; then $1/\psi$ is uniformly continuous on I. It follows from this and Lemma 1 that the map $(a, x) \to a(x)\psi(x)^{-1}\psi$ is uniformly continuous on the totally bounded set $A \times I$; whence

$$B_1 \equiv \{a(x)\psi(x)^{-1}\psi \colon a \in A, x \in I\}$$

is totally bounded and therefore equicontinuous. Let ω be a common modulus of uniform continuity for the functions in $A \cup B_1$, let $\varepsilon > 0$, and write $\delta_1 \equiv \omega(\varepsilon/3)$. Consider $a \in A$ and $x_1 \in I$. With $h \equiv a(x_1)\psi(x_1)^{-1}\psi \in B_1$, we have $h(x_1) = a(x_1)$; whence, by Lemma 3, $|(a-h)(x)| < \varepsilon$ whenever $x \in I$ and $\rho(x, x_1) < \delta_1$. This completes the proof for m = 1.

Now let $k \in \{1, ..., n-1\}$, suppose we have proved the lemma for m = k, and consider the case m = k + 1. Given $\varepsilon > 0$, by our induction hypothesis we can find a positive number $\delta < 2l$, and a totally bounded subset B of H, with the following property: if $a \in A$ and if $x_1, ..., x_k \in I$, then there exists h in B such that $|(a-h)(x)| < \varepsilon/3$ whenever $x \in I$ and $\rho(x, x_i) < \delta$ for some

 $i \in \{1, ..., k\}$. Write $\alpha \equiv \delta/2n$. In view of Lemma 2 and the induction hypothesis,

$$B_{k+1} \equiv \theta(A \times J_{\alpha}) \cup B$$

is a totally bounded, and therefore equicontinuous, subset of H. Let ω be a common modulus of uniform continuity for the functions in $A \cup B_{k+1}$, and write $\delta_{k+1} \equiv \omega(\varepsilon/3)$. (Note that as α depends on ε , so do B_{k+1} , ω , and δ_{k+1} .) Consider $a \in A$ and $x_1, ..., x_{k+1} \in I$. In view of Lemma 3 and our choice of δ_{k+1} , it will suffice to construct h in B_{k+1} such that

$$|(a-h)(x_i)| < \varepsilon/3, \qquad \forall i \in \{1, ..., k+1\}. \tag{*}$$

To this end, let

$$\sigma \equiv \min\{|x_i - x_j| : 1 \le i < j \le k+1\}.$$

Either $2n\alpha > \sigma$ or $\sigma > n\alpha$. In the former case, we may assume that $|x_k - x_{k+1}| < 2n\alpha = \delta$. By our induction hypothesis, there exists h in B such that $|(a-h)(x)| < \varepsilon/3$ whenever $x \in I$ and $\rho(x, x_i) < \delta$ for some $i \in \{1, ..., k\}$; whence, clearly, (*) holds. In the case $\sigma > n\alpha$, we can choose ξ in J_α such that $x_i \in \{\xi_1, ..., \xi_n\}$ for each $i \in \{1, ..., k+1\}$. The Haar condition then ensures that there exists h in $\theta(A \times J_\alpha)$ such that $|(a-h)(x_i)| = 0 < \varepsilon/3$ for $1 \le i \le k+1$. This completes the induction.

3

We now come to our main results, each of which is an expression of the continuity of the process whereby functions in C(I) are interpolated by elements of H.

THEOREM. If A is a totally bounded subset of C(I), then for each $\varepsilon > 0$ there exist $\delta > 0$ and a totally bounded subset B of H with the following property: if $\varphi \in C(I)$, $\rho(\varphi, A) < \delta$, and $x_1, ..., x_n \in I$, then there exists $h \in B$ such that $|(\varphi - h)(x)| < \varepsilon$ whenever $x \in I$ and $\rho(x, x_i) < \delta$ for some i.

Proof. By Lemma 4, there exist $\delta' > 0$ and a totally bounded subset B of H with the following property: if $a \in A$ and $x_1, ..., x_n \in I$, then there exists h in B such that $|(a-h)(x)| < \varepsilon/2$ whenever $x \in I$ and $\rho(x, x_i) < \delta'$ for some i. It now suffices to take $\delta \equiv \min{\{\delta', \varepsilon/2\}}$.

We end with two immediate corollaries of our theorem. The first corollary says that under appropriate circumstances, we can interpolate $\varphi \in C(I)$ by $h \in H$ with error at most ε on a set of 2n points, provided that

set is a union of two sets that are sufficiently close with respect to the Hausdorff metric ρ on the set of compact subsets of I; the second corollary is a special case of the first and subsumes Proposition (2.2) of [4].

COROLLARY 1. If A is a totally bounded subset of C(I), then for each $\varepsilon > 0$ there exist $\delta > 0$ and a totally bounded subset B of H with the following property: if $\varphi \in C(I)$, if $\rho(\varphi, A) < \delta$, and if $S \equiv \{x_1, ..., x_n\}$ and $S' \equiv \{x'_1, ..., x'_n\}$ are subsets of I with $\rho(S, S') < \delta$, then there exists $h \in B$ such that $|(\varphi - h)(x)| < \varepsilon$ for all x in $S \cup S'$.

COROLLARY 2. If A is a totally bounded subset of C(I), then for each $\varepsilon > 0$ there exist $\delta > 0$ and a totally bounded subset B of H with the following property: if $\varphi \in C(I)$, $\rho(\varphi, A) < \delta$, and $x_1, ..., x_{n+1}$ are points of I such that $\min\{|x_i-x_j|: 1 \le i < j \le n+1\} < \delta$, then there exists h in B such that $|(\varphi-h)(x_i)| < \varepsilon$ for i=1, ..., n+1.

Since we have been rigorously constructive in the foregoing, the proofs of our results, taken together, embody an algorithm for the construction of the function h with the desired interpolation property. In fact, it would be a comparatively routine matter to translate those proofs into a (doubtless not very efficient) PASCAL program for the computation of h from the relevant data.

REFERENCES

- 1. E. BISHOP, "Foundations of Constructive Analysis," McGraw-Hill, New York, 1967.
- E. BISHOP AND D. BRIDGES, "Constructive analysis," Grundlehren der mathematischen Wissenschaften, Bd. 279, Springer-Verlag, Berlin/Heidelberg/New York, 1985.
- 3. D. S. Bridges, A constructive development of Chebyshev approximation theory, J. Approx. Theory 30 (1980), 99-120.
- 4. D. S. BRIDGES, A constructive analysis of the Remes algorithm, J. Approx. Theory 32 (1981), 257-270.
- 5. D. S. BRIDGES, Recent progress in constructive approximation theory, in "The L.E.J. Brouwer Centenary Symposium" (A.S. Troelstra and D. van Dalen, Eds.), pp. 41-50, North-Holland, Amsterdam, 1982.