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Let {¢,, .., ¢,} be a Chebyshev system spanning an n-dimensional Haar
subspace H of C(I), where I is a proper compact interval in R. As is well
known, for each a in C(I) there exists an element 4 of H that interpolates
a on a given set of n distinct points of 1. In [4, (2,2)], I proved that this
interpolation can be performed approximately, with error at most ¢, on a
set of n+ 1 distinct points of I, provided that set is sufficiently close to
degenerating into an n-point one.! The purpose of this note is to show how
that approximate interpolation result can be substantially improved.

As in my earlier papers on Chebyshev approximation (for example,
[3, 4, 5]), we shall work entirely within the constructive framework erected
by the late Errett Bishop [1,2]. To do so successfully, we must pay
particular attention to the interpretation of definitions and propositions.
Thus, for example, we define a Chebyshev system over a proper compact
interval I to be a set {¢,, .., ¢, } of elements of C(/) such that f(x)> 0 for
each « in [0, //n], where [/ is the length of I and

B(a)=inf{|@,(x)|: xe I} if n=1,

=inf{|det[¢(x,)]|: X, .., x, €1, 1 min |x,—x,| 2o} if n=2
<i<j<gn
Also, a modulus of uniform continuity for a mapping f between metric
spaces (X, p) and (X7, p’) is a function w: R™ — R ™ such that if ¢>0 and

p(x, y) <wle), then p'(f(x), f(y)) <e

! As it stands, Proposition (2.2) in [4] is wrong in stating that the approximate interpolat-
ing function can be chosen to have a modulus of continuity independent of ¢. I am grateful
to the referee for pointing out this error, and for making other helpful comments about this
paper.
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2

In the remainder of this paper, {@,, .., ¢,} will be a fixed Chebyshev
system, generating a Haar space H, over the compact interval I of length .
Also, p will denote the Hausdorff metric on the set of compact subsets of I.

The following lemmas prepare us for the proof of our main result.

LEMMA 1. If A is a totally bounded subset of C(I), then the map
(a, x) - a(x) is uniformly continuous on A x I.

Proof. Since A4 is totally bounded, it is equicontinuous; let @ be a
common modulus of uniform continuity for the functions in 4. Given ¢ >0,
consider a, be A and x, ye [ such that ||a—b|| <¢ and |x —y| <w(e). We
have

la(x) — b(y)] < la(x) = b(x)| + 16(x) —b(y)| €& +&=2,
from which, as ¢ is arbitrary, the result follows. |1

For each a with 0 <a < /n, let
Jo={(xy, 0 x, )€l x;,  —x;zaforalli(1<i<n—1)},

a compact subset of I". For each ae C(/) and each x=(x,, .., x,)€J,, let
0(a, x) be the unique element # of H such that A(x;)=a(x,) for each i
(I1<ign)

LEMMA 2. If A is a totally bounded subset of C(I), then the map 0 is
uniformly continuous on A x J, for each o in (0, I/n].

Proof. Let 0<a<i/n. By Cramer’s Rule, for each ae 4 and each
X=(Xy, . X,)ES,,

n

B(a, x)= Y (4(x)"' Y a(x)pix))e,

j=1 i=1

where A(x) is the determinant of the n-by-n matrix M= [¢,(x;)], and
@ 4(x) is the cofactor of ¢(x;) in M. By the Haar condition, 4 is bounded
away from 0 on J,; whence the map x — 4(x) ! is uniformly continuous
on J,. The cofactor map x — ¢;(x) is certainly uniformly continuous, and
hence bounded, on J,. Also, for all ¢, b€ 4 and x, yeJ,, we have

|a(~xi)(pij(x)—b(yi)(pij(y)| < la(x;) — b(x;)] |(pij(x)l + |b(x;)| I‘Pij(x)" @yl
+ o, ()l 16(x,) = b(y))l
<c(lla—=bl + |@x) — @ (y) + [b(x;) = b(y)]),
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where ¢ >0 is a bound for |¢,} on J, and for all the functions in 4. Since
A is equicontinuous, we now see that the maps (a, x) — 4(x) ™' a(x,) 9 ;(x)
(1 <4, j< n) have a common modulus of uniform continuity on A x J,. The
desired result follows almost immediately. |

LemMMma 3. Let X be an equicontinuous subset of C(I), w a common
modulus of uniform continuity for the functions in X, S a subset of I, and a, h
elements of X such that |(a—h)(s)| <¢&/3 for all s in S. Then |(a—h)(x)| <&
whenever x € I and p(x, S) < w(g/3).

Proof. If xel and p(x, S)<w(¢/3), then, choosing s in S with
|x — 5| < w(e/3), we have

l(a—m)(x)l < la(x)—als)| + [(a—h)(s)| + |h(s) — h(x)|
<ef34+¢e/3+e3=¢ |

Our next lemma strengthens Proposition (2.2) of [4].

LEMMA 4. Let A be a totally bounded subset of C(I), and m an integer
with 1 <m < n. Then for each ¢ >0 there exist §,,>0 and a totally bounded
subset B,, of H with the following property: if ae A and x, .., X,,€ I, then
there exists h in B,, such that |(a—h)(x)| <e whenever xel and
p(x, x;) <, for some i.

Proof. We proceed by induction on m. If m=1, use [3,(2.7)] to
construct ¥ in H such that inf{y/(x): xel}>0; then 1/ is uniformly
continuous on I It follows from this and Lemma 1 that the map
(@, x) = a(x)y¥(x) "'y is uniformly continuous on the totally bounded set
A x I, whence

B ={a(x)y(x) 'Y:aed, xel}

is totally bounded and therefore equicontinuous. Let w be a common
modulus of uniform continuity for the functions in 4 U B, let ¢>0, and
write 6, = w(e/3). Consider ae 4 and x, eI With h=a(x)y(x,) 'Y eB,,
we have h(x,)=a(x,); whence, by Lemma 3, |(a — h)(x)| <& whenever xe [
and p(x, x;)<é,. This completes the proof for m= 1.

Now let ke {1, ..,n—1}, suppose we have proved the lemma for m=k,
and consider the case m=4k+ 1. Given ¢ >0, by our induction hypothesis
we can find a positive number § < 2/, and a totally bounded subset B of H,
with the following property: if ae 4 and if x4, ..., x, € 1, then there exists A
in B such that |(a —h)(x)| <¢&/3 whenever xeI and p(x, x,)<d for some



38 DOUGLAS S. BRIDGES

ie{l,.,k}. Writte «=6/2n. In view of Lemma2 and the induction
hypothesis,

B, ,=0(AxJ,)UB

is a totally bounded, and therefore equicontinuous, subset of H. Let w be
a common modulus of uniform continuity for the functions in AU B, , |,
and write &, . ; = w(¢/3). (Note that as o depends on &, so do B, , ;, w, and
Ox.1.) Consider ae 4 and x,, .., x;,, €l In view of Lemma 3 and our
choice of é, . |, it will suffice to construct 4 in B, such that

[(a—h)(x;)| <¢/3, Vie {l, ., k+1}. (*)
To this end, let
o=min{|x,—x|: I <i<j<k+1}.

Either 2na>o0 or o>na. In the former case, we may assume that
|x — Xk 41l <2na = 4. By our induction hypothesis, there exists 4 in B such
that |(a — h)(x)| <¢&/3 whenever x e and p(x, x,) <6 for some i€ {1, .., k};
whence, clearly, (x) holds. In the case ¢ > na, we can choose £ in J, such
that x,e{¢,,.., ¢,} for each ie {1,..,k+1}. The Haar condition then
ensures that there exists 4 in 6(A4 x J,) such that |[(a —h)(x,)| =0<¢/3 for
1 <i<k+1. This completes the induction. |

We now come to our main results, each of which is an expression of the
continuity of the process whereby functions in C(/) are interpolated by
elements of H.

THEOREM. If A is a totally bounded subset of C(I), then for each ¢>0
there exist 6 >0 and a totally bounded subset B of H with the following
property. if o€ C(I), p(p, A)<3d, and x,, .., x,€l, then there exists he B
such that |(@ — h)(x)| <& whenever xe I and p(x, x;) <0 for some i.

Proof. By Lemma 4, there exist ' >0 and a totally bounded subset B
of H with the following property: if ae 4 and x,, .., x,, € I, then there exists
s in B such that |(a — h)(x)| < &/2 whenever xe I and p(x, x;) <’ for some
i. It now suffices to take 6 =min{J’, ¢/2}. |

We end with two immediate corollaries of our theorem. The first
corollary says that under appropriate circumstances, we can interpolate
¢ € C(I) by he H with error at most ¢ on a set of 2n points, provided that
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set is a union of two sets that are sufficiently close with respect to the
Hausdorff metric p on the set of compact subsets of I; the second corollary
is a special case of the first and subsumes Proposition (2.2) of [4].

COROLLARY 1. If A is a totally bounded subset of C(I), then for each
£> 0 there exist § >0 and a totally bounded subset B of H with the following
property. if @eC(I), if pleo,A)<éb, and if S={x,,..x,; and
S' = {x}, .., x,,} are subsets of I with p(S, S') <9, then there exists he B
such that |(@ —h)(x)| <¢ for all x in SU S’".

COROLLARY 2. If A is a totally bounded subset of C(I), then for each
e >0 there exist 6 >0 and a totally bounded subset B of H with the following
property: if o€ C(I), p(o, A) <9, and x,, .., x, ., are points of I such that
min{|x,—x;|: 1 <i<j<n+1} <4, then there exists h in B such that
o—h)x)l<efori=1,.,n+1

Since we have been rigorously constructive in the foregoing, the proofs
of our resuits, taken together, embody an algorithm for the construction of
the function 4 with the desired interpolation property. In fact, it would be
a comparatively routine matter to translate those proofs into a (doubtless
not very efficient) PASCAL program for the computation of /4 from the
relevant data.
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